Stefan Toth
OOP, 02/26

S

embarc.de

<
G
o
()
oo
<
()
L=
=)
c
()
—_
>
)
O
()
=
L=
(8]
—
<
o
(%
=2
>
(]
L=
+—
.2

Stefan Toth

CEO, Berater fur Agilitat
Softwarearchitektur

DA Stefan.Toth@embarc.de

m linkedin.com/in/sto-embarc

@ www.embarc.de

embarc l‘

S

embarc.de

Kill the Vibe? Architecture in the Age of Al

\deal fOr
das ISAQB'
avanced Mody

AGILA
Stefan TOTH

VORGEHENSMUSTER FUR

SOFTWARE-
ARCHITEKTUR

4. Auflage

Kombinierbare Praktiken
in Zeiten von AGILE und LEAN

HANSER

SOFTWARE
SYSTEME
REVIEWEN

mit dem Lightweight Approach
for Software Reviews

Stefan Toth

embar C)))

> AR (W a
Worlber ich heute spreche...

)
» / & ‘ "= °

Architektur-Methodik

4
. Systeme mit Gen-Al-Mitteln designen und weiterentwickeln

§ WAL
-

Architektur-Losungen

o /' Architektur-ldeen fiir Softwaresysteme mit Ki-Anteilen

A~
()

S

embarc.de

<
G
o
(V)
oo
<<
(]
L=
=]
=
(O]
=
=]
)
O
(O]
=
L=
O
—
<
o
(]
=
>
(]
L=
+—
.2

iy

Al & Architektur

relativ einfach umzusetzen

bendtigt Human-in-the-loop und/
oder spezifisch entwickelte
Ldsungen

ist schwierig oder fehleranfallig,
Unterstitzung von Entwicklerinnen
durch Al-Lésungen ist moglich

Automatisierte Unterstiitzung
bei Architekturdokumentation

Abgleich von vorhandener
Dokumentation und Code

Dokumentationsqualitat
priifen: Liicken,
Inkonsistenzen, ...

Anderungsaufwand
fiir groBere Umstellungen
schatzen

Technologie/Framework Map
nach Verwendung, letztes
Update, Aktivitit, ...

Unterstiitzung bei der
Identifikation und Ausarbeitung
von Qualitédtszielen

Domanenschnitt und
Gliederung entwerfen /
reflektieren

Architektur-Reviews
automatisiert durchfiihren

Technologie-Evaluation
Make/Buy bzw.
Wiederverwendung

Legacy- oder Fremdlésungen
besser verstidndlich machen

Bekannte Bugs & Security Issues
in genutzten Technologien
sichtbar machen

Kontextspezifischen
Architekturprinzipien
entwickeln

Inkonsistenzen im Code
entdecken

Root-Cause Analyse bei
Problemen (Logs, Monitoring,

)

Passenden Architekturstil
finden und auspragen

Impact von Anderungen auf
Qualitatsziele abschéatzen

Architecture Decision Records
dokumentieren

Losungsoptionen flir spezifische
Probleme suchen

Kill the Vibe?
Architektur im Kl-Zeitalter

Stefan Toth
WIJAX, 11/25 embar C)))

S

embarc.de

Vibe

[valb]

That intangible something that tells you wether someone’s about to offer
you cookies or aggressively mansplain guantum physics.

<<
Y—
(@]
()
oo
<
()
L=
=]
=
()]
st
=)
)
(O]
()
=~
L=
(&)
—
<
o
(]
2
>
(]
L=
=]
>z

(o))

S

embarc.de

GOOdI
Vibe

[valb]

That intangible something that tells you wether someone’s about to offer
you cookies or aggressively mansplain guantum physics.

<
Y—
(@]
()
oo
<
()
L=
=]
=
()]
st
=)
)
(O]
()
=~
L=
(&)
—
<
o
(]
2
>
()
L=
=]
>z

=

embarc.de

Vibe-Coding

[vaib kou.d1n]

In seiner explorativsten Form vertraut der Nutzer vollstandig darauf, dass
der KI-Output wie beabsichtigt funktioniert. Wie Karpathy es formulierte,
ist das so, als wirde man ,vergessen, dass der Code Gberhaupt existiert”.

<
G
o
(V)
oo
<<
(]
L=
=]
=
(O]
=
=]
)
O
(O]
=
L=
O
—
<
o
(]
=
>
(]
L=
+—
i~

(o)

=

embarc.de

Vibe-Coding

[vaib kou.d1n]

In seiner explorativsten Form vertraut der Nutzer vollstandig darauf, dass
der KI-Output wie beabsichtigt funktioniert. Wie Karpathy es formulierte,
ist das so, als wirde man ,vergessen, dass der Code Gberhaupt existiert”.

<
G
o
(V)
oo
<<
(]
L=
=]
=
(O]
=
=]
)
O
(O]
=
L=
O
—
<
o
(]
=
>
(]
L=
+—
i~

o

Your Bgg pp. . PLETE WER ggyypmr. e
C S
featyre pahetcker has p

rity and enp,

F*** yeah!

een full
anced pare

‘ﬁ N1 .
DEI T ocal Script into a mod
ern

. ' Scalable we
- erfectly now- b
\ The scraping is workind ¥ ing PPR scrapers 22
greatt 1 @ Scheduler is only rund FantasyPros:
scrapi“g-l . 6? 'Laye rs] 'aDi/chcck;m‘,auabillty
1 PPR-ofLY ion: @ CBS Sports: ore ithout
requested data collection: Ccessfully Wl
2 ‘Succ-ess":“-L ers completEd su thon)
492 pla%?;i storage: goth scrapP ot
3. Data a in comp €
database errer ¢ conflict but thz ié;ipigi database 10
hed with por prgcess an

ras) old
The serveili- ot me kill E&e
succeSSfU ta was stored:

<
e
o
(O]
oo
<
(]
L=
+
=
(O]
st
=J
et
(O]
(O]
5=
=
o
fut
<
(o
(]
2
>
(]
L=
=
p>2

da
confirm 7€ kill -9)
..q001 | xargs ¥t -
h(1sof -ti:30 e
S -~ LI builg oot With mupeq .
Ba Ontent) - SEE?rlty bestlld Systenm with ultke”"lmnment
_ (rQ() C Monltoring and”;ECtlces with ::mprehensiye p7cf“nnort
servapiy cret e Package, g,
N c gement
@ Compx ehensjye Documen+ "Hauration
ation
280+ lines
- N RE
340+ 1ip St:DME "ith archiye
Perfﬂrma P-by-g epl Cture Overyig
Tro“blesh tC:;lp:rJ_sO ?:ment de w
n

=
[
o
=
123
p
s
o
=3
n

2,

;A,;;L ! AndrejK
ol arpath
‘%’ @karpathy y@

Vibe-Coding

[vaib kou.d1n]

=

embarc.de

In seiner explorativsten Form vertraut der Nutzer vollstandig darauf, dass
der KI-Output wie beabsichtigt funktioniert. Wie Karpathy es formulierte,
ist das so, als wirde man ,vergessen, dass der Code Gberhaupt existiert”.

<
G
o
(V)
oo
<
(]
L=
=)
=
()
—_
=]
)
O
()
=
L=
O
—
<
("o
(%
=
>
(]
L=
+—
i~

Y
N

Wie sorgen wir fur ,good
vibes’, ohne ignorant oder
oberflachlich zu sein?

E

Zielorientierung, Flow, ausreichend Qualitat...

embarc.de

v (X)

G = g = Lo =) 2w

Ziel / Problem Umsetzungsidee Implementierung Priifung / Test

|

il
il

<
G
o
(O]
oo
<
(]
L=
=)
S
(O]
=
>
e
O
(O]
=
L=
(8]
—
<
-
(]
=2
>
(]
L=
=)
=

Y
Ul

E

embarc.de

entered the chat

<
e
o
(O]
oo
<
(]
=
+
=
(O]
st
=J
et
(O]
(O]
5=
=
o
fut
<
(o
(]
2
>
(]
L=
=]
7

Y
()]

S

embarc.de

<
G
o
(V)
oo
<
()
L=
=)
=
()
—_
=]
)
O
()
=
L=
O
—
<
o
(%
=
>
(]
L=
+—
.2

Y
~N

Al Entwicklungsansatze

Conversational
Programming

LN

p: Softwareentwicklung
im iterativen Dialog

Idee mit einem LLM

Chat interfaces
(ChatGPT, Claude, IDE

{éﬁ plugins), copilots mit

chat modes.
Tools

Spec-Driven

Development (SDD)

One-Shot Implementierung

auf Basis von Kontext und

Spezifikation in natlrlicher
Sprache

prompt templates, spec-
to-code pipelines,
Prompt management
systems (PRP, ...

Agentic
Development

Umsetzung durch einen
oder mehrere autonome
Agenten, die planen,
reflektieren und umsetzen.

Agents, Agentic
frameworks (inkl. Swarms),
orchestration runtimes
(LangChain, ...), Shared
Memory Lésungen

CLI Tools (aider, Claude Code, ...), LLM-first IDEs (Windsurf, Cursor, ...), MCPs,
Playgrounds/Sandboxes, Evaluation/Test Harnesses (SWE-bench, ..), ...

S

Generative Kl in der Entwicklung

<
o notwendig Automatici .
Context Engineering Matisierte pr ufung Wichtiger
L% =
Ziel / Problem Umset.zu—ngsi e AJ:‘:::::Z:; Priifung / Test

X

Verbesserte Empirie

<
Y—
o
(O]
1o}
<<
(]
=
-
=
(O]
st
=)
et
(O]
(O]
5=
=
(&)
fut
<
(o
(]
2
>
(]
L=
=
&=

Y
(o0}

S

embarc.de

Context Engineering

Uberblick und Steuerbarkeit zuriickgewinnen

<
G
o
()
oo
<
()
L=
=]
=
()
=
=)
e
O
()
5=
{5
(&)
o
<
o
()
2
>
Q
L=
=]
<

(Y
(o]

“Mir sind tausend Nazis lieber
als ein Fliichtling!”

= Dinge die unser Chef sagt und falsch verstanden werden.

Kill the Vibe?

|

“Mir sind tausend Nazis lieber
als ein Fliichtling!”

Dinge die unser Chef sagt und falsch verstanden werden.

& Bestattungsvorsorge. Jetzt.
Hin & Weg_ www.HW-BESTATTUNGEN.de

Kill the Vibe?

N
[y
1
|
]
m
7
-3
>
-
=
(=]
4
(2]
m
4

S

Was ist im Kontext?

embarc.de

Context engineering is the discipline of building dynamic systems that supply an LLM
with everything it needs to accomplish a task.

Context window Context window

1 ' I 1
1
: SRS : i System prompt :
! 1 1 1
: ' -
! 1
1
s Assistant v :
' g@éﬁ ! M il] — | Assistant
! | : emory e message
1
: 1 1
- |
1 1 1
1 1 1
-
] 1
1 1
' | Message history
1 1
1 1
] 1

o g |

<
G
o
(O]
oo
<
(]
L=
=)
c
(O]
=
>
)
O
(O]
=
L=
(8]
—
<
o
(]
=2
>
(]
L=
+—
§

N
N

=

Context Engineering Optionen

embarc.de

" Claude.md / Agents.md your-project/
/ g I—.claude/

- Regeln (Zb als md) | — cLaubE.nd # Main project instructions
L
m | rules/
SyStem Prompt | I— code-style.md # Code style guidelines
" Tools (Fah|gke|ten) | — testing.md # Testing conventions
| L security.md # Security requirements

= MCP-Server

" Sub-Agenten / Modes (eigener Kontext)

= Skills

[| HOO kS == - E?gjg;fsgﬁ:gg—ﬂ,—zﬂzbﬂbm « 116k/2080k tokens (58%)

System prompt: 2.E
m T I 301 © System tools: 1
m E 2 MCP tools: 17.¢€
e p ates L & Memory files:
L Messages: 84.0k
] . 1L3 I Free space: B4.4k

<
G
o
(V)
oo
<
(]
L=
=)
=
()
—_
=]
)
O
()
=
L=
O
—
<
("o
(%
=
>
(]
L=
+—
i~

MCP tools - /mcp
L mcp__applescript_execute_ applescript_execute (applescript_execute)588 tokens

N
w

trncp__f@lesystem__read_file (filesystem): 47

E

Product Requirement Prompts (PRPs)

)
<
(&)
—
©
o)
E
o

" Die Macht des ersten prompts...

context-engineering-intro/
I— .claude/
| }— commands/

<

E | | F— generate-prp.md # Generates comprehensive PRPs
o | | L— execute-prp.md # Executes PRPs to implement features
2 | L— settings.local.json # Claude Code permissions

- — PRPs/

£ | }— templates/

IS | | L— prp_base.md # Base template for PRPs

= | L— EXAMPLE_multi_agent_prp.md # Example of a complete PRP
ft_ — examples/ # Your code examples (critical!)
S — CLAUDE.md # Global rules for AI assistant
f) |— INITIAL.md # Template for feature requests

= — INITIAL_EXAMPLE.md # Example feature request

< L README.md # This file

N
B

S

Architektur im Kontext

embarc.de

" Doméanenkonzepte kurz erklaren [system-clesian

= Struktur und Abhangigkeiten ,
definieren (Repos & Rules) M1 system-overview.md

" Ist-Struktur der Losung zugreifbar machen: Dependency
Graphen oder Repository Planning Graphs (RPG)

M{ domain-concepts.md

" Architekturprinzipien hinterlegen (Agents.md, Regeln, System
Prompt oder RAG)

" Spezifische Konventionen fir System-Teile (z.B. Mobile Ul)
hinterlegen (Skills)

<
G
o
(V)
oo
<<
(]
L=
=]
=
(O]
=
=]
)
O
(O]
=
L=
O
—
<
o
(]
=
>
(]
L=
+—
.2

Hintergrund auch bei Nick Tune:
https://www.oreilly.com/radar/reverse-engineering-your-software-architecture-with-claude-code-to-help-claude-code/

N
(%2}

S

Context Overflow vermeiden

embarc.de

Context window " Kontext nach und nach aufbauen
| (statt initial Uberladen)

\ | " Sub-Agenten / Modes nutzen

.| ssistan

e " Architekturinformation destillieren
| (statt RAG auf alles)

" Code-Menge reduzieren

" Systemteile isolieren

<
Y—
(@]
()
oo
<
()
L=
=]
=
()]
st
=)
)
(O]
()
=~
L=
(&)
—
<
o
(]
2
>
()
L=
=]
>z

N
()]

)|

Code-Menge reduzieren

)
-c' Lioy ‘Ill‘~'"'~’ 7y
% 1140 3);
o) 1 1141
) ame?.rating || null, -
g 4316 ra?lngf ma:z::zg:_game?.weight [“Ull'ers ll;;:; ;; Worker Export ==
4317 weight: mars. mach.bgg_game?'bESt—plaﬁ 9ar1144 4, -
4318 :es‘cﬁ;;ﬁ m;t recommended_pct: match.bgg_t e =
WO, =9t
:;; }, - . 1146 export defaylt {
X ienxtra_game: itle 1147 .
:32; ' title: match.::::;:gﬁzTﬁ;:lt ' 1148 * HTTP Request Handler
url: match.ca 1149 */
4253 } 1150 fetch: app. fetch,
— :325) - 1151
E 4326 ed data in KV with longer TTh ne 152 v
o 4327 // Store enhanc ress:wishlist:${jobId}:enha 1153 * Scheduled Hangler _ Runs daily cpon jobs
) 4328 await kv.put(prog 1154 */
<qu 4329 step: 10, . 10 1th Bd 1155 async Scheduled(event: ScheduledEvent, env;: Bindings, ~Ctx: ExecutionCont«
E= 4330 total_ste?\:jshllist refresh completed wit 1156 console. log(') Running scheduleq daily sync,, .);
< 4331 T et o 1157
© 4332 completed: d: enhancedatchResults. Length, 1158 try {
5 4333 matchesTfou:ar‘IcedMatchReSUltS' is ha 1159 // Note: Without queues, the €ron job woulg need to pe handleq differe
g 4334 matCh%.-e:rue // Flag to indicate this 1160 // For now, just log that it ran. You can add direct Processing here ji- =
= 4335 er,'hanwd'. new'nate()-tOISOStri"g() L 1161 console. log('y Scheduled task triggered');
S 4336 Rt aRpaepast })i // 1 hour 1162 } catch (error) ¢
<Lt 4337 }), { expira i1 fetchir 1163 console.error('x Scheduleq task faileq: " error);
‘© 4338 og "% Backgraund BGG detail fetchif 08
e 4339 console. lag 1165 }
= 4340 1166},
() error) { . hanced mat 2
< 4341 } catch (('¥ Error storing en 1167
= 4342 console.error
> 4343 }

4344}

N
~N

5 Fehler/ Probleme scopen

S

Generative Kl in der Entwicklung

embarc.de

. .o notwendig Auto ,
context Engmeermg n Matisjerte Prufung Wichtiger
(] 7 WD
[— 800
. — Al-gestiitzte Priifung / Test
AelifErobicm Umsetzungsidee Umsetzung arung 7 Tes

X

<
Y—
(@]
()
oo
<
()
L=
=]
=
()]
st
=)
)
(O]
()
=~
L=
(&)
—
<
o
(]
2
>
()
L=
=]
>z

Verbesserte Empirie

N
(o]

Automatisierte Prufung

Verzahnung von Architektur und Entwicklung

S

Tests schreiben lassen... Nicht immer gut...

embarc.de

def test_evidence_collection(self):
"""Test collecting evidence for validation decisions.™""
validation = {

"stressor_id": "S1",

After thoroughly analyzing

: Th
Language Mismatch: B

- Implementation: T

completely fak
€ and do not test any actual imp
ementation,

- Tests: YpeScript/Node., 5 .
ests: Python C.py files in 5t§;g;/5;#:)flles in /
L
=
(O]
S n L™ n . n
= type": "config",
e "location": "config/database.yml",
'§ “"snippet": "replicas: [db-replica-1, db-replica-2]"
~ }
o
(]
!]
>
q) }
=
< assert len(validation["evidence"]) > @

assert all("type" in e and "location" in e for e in validation["evidence"])

w
=

=

Separate Test und Review Agents

)
=
(&)
—
©
o)
S
o

v OPEN EDITORS .claude > agents > core > ¥ reviewer.md > ...
GROUP 1 23 # Code Review Agent

35 ## Review Process

X % reviewer.md .claude/agents/core % i Padorashce Raviat

specialized 150

swarm 151 // X Code duplication
templates 152 function calculateUserDiscount(user) { ... }
153 function calculateProductDiscount(product) { ... }

(98]
N

GROUP 2 123
¥ Claude Code 124 ### 4. Code Quality Review
v BGG_CHECKER_ONLINE L =) & 125
126 **typescript
Vv .claude
127 // QUALITY METRICS:
v agents 128 v SOLID principles
<_(> analysis 129 v DRY (Don't Repeat Yourself)
‘46 > architecture 130 v KISS (Keep It Simple)
) > consensus 131 v Consistent naming
1o} 132 v Proper abstractions
< v core 133
= ¥ coder.md 134 // EXAMPLE IMPROVEMENTS:
= ¥ planner.md 135
= ¥ researcher.md 136 // X Violation of Single Responsibility
o : 137 class User {
reviewer.md
2 138 saveToDatabase() { }
S ¥ testermd 139 sendEmail() { }
e > data 140 validatePassword() { }
5 > development 141 generateReport() { }
5 N 142 }
< evops 4
o :
) Gacccimentiiion 144 // € BETTER DESIGN:
-‘E > github 145 class User { }
@ > hive-mind 146 class UserRepository { saveUser() { } }
< > optimization 147 class EmailService { sendUserEmail() { } }
— Renarc 148 class UserValidator { validatePassword() { } }
§ . 149 class ReportGenerator { generateUserReport() { } }
7
>
S

testina

S

Al Review: Multi-Agent Losung

e

@
©
O
—
@®©
el
IS
19

8

Orchestrator
- Language Technology Data Flow Pattern
:‘6 Detector Detector Constructor Identifier
g Documentation
8 e Octopus
= Semantic Graph Modularization e
< Analyser Constructor Detection
é Other Tools:
2 Storage, IFs,
S Function Calls, MCPs, ...

=4} basic =& composite Qanalytical

(98]
w

E

Language, Technology & Architekturstil

embarc.de

ul Language Distribution:

— JavaScript: 37.7% (frontend logic) Key Insights:

— Java: 29.6% (backend/server-side) .

— SCSS: 13.5% (stylesheets) « Multi-module Maven i

- €SS: 9.3% (additional styling) 2. Spring Boot mj Project with separate ban

~ HTML: 6.3% (web pages) . i. Moderg respongczsﬁgglﬁgsugishltecture k and credit modules
- Gherkin: 3.3% (BDD testing) + Behavior-driven development 7 BOOtStr?P + jQuery

— Shell: 0.3% (build scripts) 5. Full-stack Java web appli With Gherkin test scenarios

- SQL: 0.1% (database queries) PPlication with rich frontend

%, Build Tools:

— Maven (100% confidence) - Primary build system with POM files in main +
submodules

— Maven Wrapper (84% confidence) - Maven wrapper scripts for consistent builds

% UI Framework Stack:

Bootstrap (100% confidence) - Responsive CSS framework

jQuery (100% confidence) — JavaScript library with DataTables & Peity plugins
Font Awesome (70% confidence) - Icon library

Animate.css (70% confidence) - CSS animation library

Normalize.css (70% confidence) - CSS reset/normalization

“ Web Framework:

<
G
o
(O]
oo
<
(]
L=
=)
c
(O]
=
>
)
O
(O]
=
L=
(8]
—
<
o
(]
=2
>
(]
L=
+
[

— Spring Boot (80% confidence) - Java web framework detected through imports and
annotations

w
B

E

Graph Constructor . " .,

embarc.de

= Entitatsbeziehungen

= Methodenaufrufe

= Endpunkte

= Gemeinsame Anderung

= DB-Beziehungen

= Remote Methodenaufrufe
= Config-Dependencies

= Semantische Nahe

<
G
o
(O]
oo
<
(]
L=
=)
S
(O]
=
>
e
O
(O]
=
L=
(8]
—
<
-
(]
=2
>
(]
L=
=)
=

(98]
19}

)

Gliederung und Datenfluss

()
o
(&)
—
©
Q0
()
= m Projects / Personal Untitled diagram B B 9 Export Upgrade
B code @ Avtotpdste | O Boes | X U ©8 #$#9EE@ Y @ wea & m

1 ——

2 config:

3 layout: dagre

4 —

5 flowchart TB

6 bank_service["Bank Service
<small>Core ban
. 7 credit_service["Credit Service
<small>Cred
< 8 accountcontroller["AccountController
<smal
o 9 authenticationcontroller["AuthenticationContr CreditAppPraducer Credit Service CreditAppCensumer ““:‘;:‘“:‘:I'"""““ AuthenticationCantroller Bank Service
o 10 usercontroller ["UserController<broesnallolser Sends applications to quess Crgit ard processing Recatves status updates ““mm’mx:;nmh" WY teken generation Care banking operations.
gJD 11 accountservice --> accountrepository[“account .
< 12 userservice --> userrepository["userrepositor .
@ 13 jwttokenfilter["JwtTokenFilter
<small>API e T i SwtTokenprovider
= 14 creditappproducer["CreditAppProducer
<smal communication tramsac. T peperation/vatdation
o= 15 creditappconsumer ["CreditAppConsumer
<smal l
f_: 16 bank_service -.-> open_banking_platform__obp_
) 17 jwttokenprovider —-> n1["Untitled Node"]
— 18 obpservice["0bpService
<small>Open Banking
3 19 visaservice["VisaService
<small=VISA payme
8 20 searchservice["SearchService
<small>ATM lo
— 21 multihttpsecurityconfig["MultiHttpSecurityCon
c 22 h2_database[("Database")] t and transaction

se
8 23 mysql[("Database")] Accoun atities S— Databa
. " Z e
< 24 postgresql[(“Database")] 7 ta ce
ms_sq L agaver((*Day Transaction da Accountserv! JpA/Hibernate
[} REST/Web API
o]
> Ap
eue
ek P.RESPONSE qu bl

o Application status___y CREDIT.AP
= Credit applicatwﬂ__’ Credit Service JMS message queue
> Message Broker JMS message queue

Al architecture companion

w
(o))

S

Guardrails

embarc.de

" Preventative guardrails are proactive guardrails that
specify the outer bounds of what developers can do.

" Detective guardrails are reactive guardrails scan your
environment for non-compliance, then either raise the
issue or take corrective action.

<
G
o
()
oo
<
()
L=
=)
=
()
—_
=]
)
O
()
=
L=
O
—
<
o
(%
=
>
(%
L=
+—
.2

w
N

S

Klassisch: Architektur und Entwicklung

o
=
(S
—
©
el
s
o

Architektur Entwicklung
=
%" nutzt
< nutzt erzeugt
4:-'%: A 4 A 4
s Modell / Skizze Code
.—§

w
(o0}

S

Agentic: Architektur und Entwicklung

o
=
(S
—
©
el
s
o

Architektur & Entwicklung

: N

-

g nutzt Kontext kzeugt
% . Wird

:5 Modell / Skizze < “bereetztin Code

.—§

(98]
o

S

Generative Kl in der Entwicklung

embarc.de

. - notwendig Auto N
context Engmeermg n Matisjerte Prufung Wichtiger
(] 7 WD
—— 800
. S= Al-gestiitzte .
Ziel / Problem Umsekzungsities Umsetzung Prifung

X

<
Y—
(@]
()
oo
<
()
L=
=]
=
()]
st
=)
)
(O]
()
=~
L=
(&)
—
<
o
(]
2
>
()
L=
=]
>z

Verbesserte Empirie

5
o

Verbesserte Empirie

Kontinuierlicher Lernprozess — individuell und in der Organisation

=)
=
()
=
=)
)
(6]
(O]
=
L=
O
—
<<
o
(]
=
>
(]
L=
+—
<

1Y
[ulry

S

Hypothesen-orientierte Architektur

o
=
(S
—
©
el
s
o

| R e
? WD
= 00

= e Al-gestiitzt
< U gest;l € Prifung / Test
1S Hypothese 1 nsSeLeung
% X
<
2
o s|=
1 @ ?
ot e 800
=] = Al-gestiitzte)
;:: Ziel / Problem Hypothese 2 Umsetzung Priifung / Test
; X
o)
>
()]
7=
=

D
N

S

embarc.de

<
e
o
(O]
1o}
<
(]
=
+
=
(O]
st
=J
et
(O]
(O]
5=
=
o
fut
<
(o
(]
2
>
(]
L=
=
p>2

B
w

Agentic Coding professionell einfiihren

p) |28
@ = 00 > 7
Ziel / Problem — . Risikmrier:r&ana Priifung / Test
Umsetzungsidee 1 Implementierung

@“?mz ﬁ

Al-gestiitzte
Umsetzungsidee 2 Umsetzung

Priifung / Test

S

Agentic Architecture ist nicht gratis

embarc.de

" Qualitatsziele kennen

" Rahmenbedingungen explizit machen

" Domane und Strukturierung klar herausarbeiten

" Klare Schnittstellen schaffen

" Sprach-Eigenschaften und Best-Practices definieren

" Passende Testansatze schaffen

" Integration, Deployment und Monitoring professionalisieren
= Klare KI-Verwendung etablieren (inkl. Prozesse, Kontext etc.)

<
G
o
(V)
oo
<
()
L=
=)
=
()
—_
=]
)
O
()
=
L=
O
—
<
o
(%
=
>
(]
L=
+—
.2

B
D

Feedback &
Questions?

S

S
(o))

embarc.de

<
G
o
(V)
oo
<<
(]
L=
=]
=
(O]
=
=]
)
O
(O]
=
L=
O
—
<
o
(]
=
>
(]
L=
+—
.2

Folien & Infos auf embarc.de

A An-gestitzte Softwareentwic' X

C % embarc.defleistungen/weitere-leistung % N Gy O | § zumAkualisieren neustarten }

embarc A

Leistungen Themen Impulse Aktuelles Referenzen Uber uns 03 DE

Al-gestiitzte Softwareentwicklung

Agentic Coding, Context Engineering und Guardrails effektiv nutzen

) Architekturarbeit mit Al-Wer! X

<« C % embarc.defleistungen/v I / * A By O | © zumakualisieren neustarten i

A
Software-Development 2.0 e

Leistungen Themen Impulse Aktuelles Referenzen Uber uns 03 DE

Wir unterstiitzen Teams beim professionellen Einsatz von Age
sauberes Context Engineering und verankern Prinzipien in Age
Guardrails. Ziel ist eine moderne und flissige Softwareentwick

Werkzeuge unterstitzt,nachvoliziehbar, qualitdtsgesichert unc Arch ite ktu ru rb e it m it A I -Werkzeu g e n

bestehende Prozesse und Architekturen.

Konzeption, Dokumentation und Prinzipien neu denken.

Al-gestiitzte Architekturarbeit

Findet mich auf Linkedin...

embarc)

	Slide 0: Kill the Vibe? Architektur im KI-Zeitalter
	Slide 1: Stefan Toth
	Slide 2
	Slide 3: Worüber ich heute spreche…
	Slide 4: AI & Architektur
	Slide 5: Kill the Vibe? Architektur im KI-Zeitalter
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: F*** yeah!
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Zielorientierung, Flow, ausreichend Qualität…
	Slide 16
	Slide 17: AI Entwicklungsansätze
	Slide 18: Generative KI in der Entwicklung
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Was ist im Kontext?
	Slide 23: Context Engineering Optionen
	Slide 24: Product Requirement Prompts (PRPs)
	Slide 25: Architektur im Kontext
	Slide 26: Context Overflow vermeiden
	Slide 27: Code-Menge reduzieren
	Slide 28: Fehler / Probleme scopen
	Slide 29: Generative KI in der Entwicklung
	Slide 30
	Slide 31: Tests schreiben lassen… Nicht immer gut...
	Slide 32: Separate Test und Review Agents
	Slide 33: AI Review: Multi-Agent Lösung
	Slide 34: Language, Technology & Architekturstil
	Slide 35: Graph Constructor
	Slide 36: Gliederung und Datenfluss
	Slide 37: Guardrails
	Slide 38: Klassisch: Architektur und Entwicklung
	Slide 39: Agentic: Architektur und Entwicklung
	Slide 40: Generative KI in der Entwicklung
	Slide 41
	Slide 42: Hypothesen-orientierte Architektur
	Slide 43: Agentic Coding professionell einführen
	Slide 44: Agentic Architecture ist nicht gratis
	Slide 45: Feedback & Questions?
	Slide 46: Folien & Infos auf embarc.de
	Slide 47: Findet mich auf LinkedIn…

